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Abstract: The segmentation of hyperspectral images (HSIs) is being used in many fields
from target detection to classification. In this paper, we propose a new affinity matrix for the
normalized cuts algorithms that takes into account both the hyperspectral and LiDAR data
for segmentation. The affinity matrix uses both the spatial-spectral as well as the elevation
information; and our results show that the segmentation is much more accurate and can
distinguish objects better than a plain normalized-cuts algorithm. We show the improvement
gained by adding the LiDAR data onto the hyperspectral data, and discuss the parameters
selection strategies.

OCIS codes: 100.4145, 280.3640.

1. Introduction

Hyperspectral images (HSI) measure how much light is reflected from a material. Since materials reflect light differ-
ently, these reflections generate a spectral fingerprint for each material. When a large number of bands are considered,
material can be detected from a single pixel in HSIs. This important information has been used in many areas including
the defence industry, mining, civil engineering and geology.

On the other hand, LiDAR is a remote sensing technique that measures the elevation in a given scene. The elevation
information obtained from LiDAR has been complementary to hyperspectral imagery. Using elevation maps, it is
possible to distinguish objects of similar material but of different elevation. Therefore, it makes great sense to combine
hyperspectral data with the elevation information derived from LiDAR to increase the efficiency of HSI segmentation.

In our previous paper [1] and in [2], the normalized cuts algorithm was extended for the segmentation of hyper-
spectral images. The affinity matrix of the normalized cuts algorithm was modified such that it uses both the spatial
and spectral information; and the results were showed good success in segmentation. However, errors occurred when
similar objects whose height were different were also segmented as the same object.

In this paper, we propose to integrate both the LiDAR and HSI data; and we propose a Normalized Cuts method
that depends on both the spectral-spatial and the elevation information.

2. Background

A graph G = (V, E) consists of a set of objects called vertices (V) and edges (E) that represent connections between
vertices. A graph is weighted if each edge has an associated number wi, j. In figure 1, the graph consists of two classes:
A and B. Several nodes in the graph are connected each other and weighted based on the similarity between them. If
the similarity of two nodes is high, weight on the edge is close to 1, otherwise it is close to 0. We aim to partition the
graph into disjoint sets such as A and B. The degree of dissimilarity between two classes can be computed as the total
weight of the edges that have been moved away. In graph theory, it is called cut, and is computed as below:

cut(A,B) = ∑
i∈A, j∈B

wi, j (1)

The optimal partitioning graph is the one that minimizes this cut value [3, 4].
However, the minimum cut criteria favors to cut small sets of isolated nodes. To avoid this problem, equation 1 must

be normalized.
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Fig. 1. An example of weighted graph.

Instead of looking at the cut value, the normalized cut compute the cost function as a fraction of the total edge
connections between classes to all the nodes in the graph. The normalized cuts (Ncut) is given as follows:

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)
assoc(B,V )

(2)

and

assoc(A,V ) = ∑
i∈A, j∈V

wi, j (3)

Now, we aim to minimize the normalized cut value. The solution of this problem is discrete. If it is relaxed to take
on real values, equation 2 can be minimized by solving a general eigenvalue system that is given in equation 4. W is
similarity matrix whose entries compose of wi, j, and D is a diagonal matrix with entries that are the sums of connection
from one node to all other nodes on its diagonal.

(D−W)y = λDy (4)

In this paper, hyperspectral imagery and LiDAR data are combined to construct the similarity matrix. Then, using
constructed similarity matrix, we solve relaxed version of equation (4), and we seek a discrete solution closest to the
continuous optima in an iterative manner as mentioned in [4]. The discrete eigenvectors of this system correspond to
segments of HSI.

3. Proposed Similarity Matrix for HSIs

Designing the similarity matrix is critically important for image segmentation. Firstly, we construct a weighted graph,
by taking each pixel as a node, then connecting each pair of pixels by an edge. We use spatial-spectral information
and LiDAR data to compute a weight for each pair of pixels. However, all pixel pairs do not connect, therefore, just
the closest r pairs are connected for computational complexity. We can define edge weight that connect two nodes as
follow:

wi, j = e
−

dspectral (i, j)

σ2
spectral ∗ e

− dLiDAR(i, j)

σ2
LiDAR ∗

{
e
−

dspatial (i, j)

σ2
spatial i f dspatial(i, j)< r
0 otherwise

(5)

In equation 5, dspectral(i, j), dLiDAR(i, j) and dspatial(i, j) are spectral, LiDAR and spatial Euclidean distance between
th nodes i and j, respectively. σspectral , σLiDAR and σspatial control the scale of data similarity measure. In the simulation
part, efficiency of HSIs segmentation will be discussed for different r and values.

4. Data Set and Results

4.1. Data Set Description

MUUFL Gulfport Hyperspectral and LiDAR Airborne data set is used for simulation. Data were collected using a
Gemini LiDAR and CASI-1500 flown in a single plane simultaneously [6].
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4.2. Results

First, we compute the similarity matrix W as given equation 5. Parameters in this equation are chosen experimentally
as follows: σspectral = 0.3, σLiDAR = 2 and σspatial = 5 and r = 6. Second, equation 4 is solved for 14 eigenvalues and
corresponding eigenvectors. The number of eigenvectors are also chosen experimentally for better segmentation. These
eigenvectors are the solution of relaxed problem. We use the method given in [5] and obtain the discrete eigenvectors.
Some of this discrete eigenvectors are given in figure 2. These eigenvectors partition the image into disjoint sets as we
have seen in figure 2. Then, discrete eigenvectors are merged and segments of HSIs are obtained. In figure 3, HSIs’
segments that compose of 14 discrete eigenvector are shown. There are two segmented image in figure 3. Figure 3(b) is
segmented by using spatial and spectral information. However, figure 3(c) is segmented by using LiDAR data beside
spatial and spectral information. By using LiDAR data, segmentation results have been improved. When LiDAR is
used, some group of trees, some individual trees and one extra object are also segmented as seen in the figure 3(c).

We will discuss segmentation solution for different σs, different r and different number of eigenvector, and results
these parameters will be given.

Fig. 2. Six discrete eigenvectors

Fig. 3. (a) false RGB, (b) segments of HSI without using LiDAR, (c) segments of HSI with using
LiDAR
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